
Text Steganography with High Embedding Rate: Using
Recurrent Neural Networks to Generate Chinese Classic Poetry

Yubo Luo
Department of Electronic Engineering

Tsinghua University
Tsinghua National Laboratory for

Information Science and Technology
Beijing, China 100086

luoyb14@mails.tsinghua.edu.cn

Yongfeng Huang
Department of Electronic Engineering

Tsinghua University
Tsinghua National Laboratory for

Information Science and Technology
Beijing, China 100086

yfhuang@tsinghua.edu.cn

ABSTRACT
Wepropose a novel text steganographymethod using RNNEncoder-
Decoder structure to generate quatrains, one genre of Chinese po-
etry. Compared to other text-generation based steganographymeth-
ods which have either very low embedding rate or flaws in the nat-
uralness of generated texts, our method has higher embedding rate
and better text quality. In this paper, we use the LSTM Encoder-
Decoder model to generate the first line of a quatrain with a key-
word and then generate the following lines one by one. RNN has
proved effective in generating poetry, but when applied to stegano-
grapy, poetry quality decreases sharply, because of the redundancy
we create to hide information. To overcome this problem, we pro-
pose a template-constrained generationmethod and develop aword-
choosing approach using inner-wordmutual information. Through
a series of experiments, it is proven that our approach outperforms
other poetry steganography methods in both embedding rate and
poetry quality.

KEYWORDS
text steganography; poetry generation; recurrent neural networks

ACM Reference format:
Yubo Luo and Yongfeng Huang. 2017. Text Steganography with High Em-
bedding Rate: Using Recurrent Neural Networks to Generate Chinese Clas-
sic Poetry. In Proceedings of IH&MMSec ’17, June 20–22, 2017, Philadelphia,
PA, USA, , 6 pages.
DOI: http://dx.doi.org/10.1145/3082031.3083240

1 INTRODUCTION
Steganography approaches hide the existence of secret informa-
tion and are usually classified by the type of multimedia carries
that they are based on. As text is the most commonly used me-
dia carrier, text steganography is of great value. Generally, text
steganography ismainly divided into two categories: format-based
methods and content-based ones.

Format-based approaches hide secret information by making
changes to the format features of text cover. Early works are based

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
IH&MMSec ’17, June 20–22, 2017, Philadelphia, PA, USA
© 2017 ACM. 978-1-4503-5061-7/17/06…$15.00
DOI: http://dx.doi.org/10.1145/3082031.3083240

on embedding space characters in text [9], altering the space be-
tween words [8] or lines [1], etc. Content-based methods are usu-
ally based on lexical, syntactic or semantic manipulations. Most
early approaches modify the semantic contents of existing texts to
hide information, such as using synonym replacement strategy [10],
changing the structures of sentences [5], etc. Then, many text-
generation-based steganography methods were proposed, such as
generating a random sequence [16] or considering context-free
grammars [3].

With regard to poetry-based steganography, An information
hiding algorithm based on poetry generation was proposed in the
literature [18], and Liu et al. [11] proposed a segment-basedmethod.
But, they both choose words randomly during the generation pro-
cess, totally ignoringword collocation and the relationship between
lines. Thus, the generated poems lack central ideas and have high
possibility of attracting suspicions. Luo et al. [12] proposed an ap-
proach based on Markov model. It produces better Ci-poetry but
its embedding rate is quite low.

More recently, deep learning methods have emerged as an ef-
fective discipline, which considers the poetry generation as a ma-
chine translation problem and thus an encoder-decoder model can
be used to generate poetry. Zhang and Lapata [19] compressed all
previous information into a vector to guide the generation. Wang
et al. [13, 14] and Yi et al. [17] use bidirectional recurrent neural net-
work (RNN) with attention mechanism to help capture long time
dependency between poetry lines. Wang et al. [15] proposed a
planning-based method to ensure the coherence of generated po-
ems.

However, if quatrain generation based on neural networks is
applied to steganography directly, the quality of generated poems
will decrease sharply, because we have to create redundancy by ar-
ranging several candidates for each char-position. This will cause
a situation where characters from certain positions which should
be regarded as a word cannot be treated as a word. For example,
the first two characters of a quatrain line should always be treated
as a word. If we happen to choose two characters which never ap-
pear within one word, this will definitely jeopardize the quality of
generated quatrains.

To handle this issue, we propose a template-constrained genera-
tion method. As we know, all quatrains have fix rhythmic pattern,
so we can segment all quatrain positions into two-char or three-
char prosodic blocks according to rhythmic pattern, then we can
obtain a template to guide the generation process. In each block,

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

99

IH&MMSec ’17, , June 20–22, 2017, Philadelphia, PA, USA

characters should be regarded as a word rather than separate char-
acters. In order to make sure that randomly selected characters
within one block can be treated as a word, we use inner-word mu-
tual information to help us choose candidate characters. In this
way, we can ensure that the chosen characters in one block can be
treated as a natural word.

The contribution of this paper is two-fold. First, we introduce
neural-based poetry generation to steganography, which hasmuch
higher embedding rate than previous poetry-based steganography
methods. Second, we propose a template-constrained generation
method and a word-choosing approach using inner-word mutual
information, to alleviate the quality decline caused by information
hiding.

2 BACKGROUND
In this section, we first give a brief overview of neural-based po-
etry generation framework, and then describe how we implement
encoder-decoder models to build the poem generator.

2.1 Encoder-Decoder model
Classical Chinese quatrains have strong semantic relevance between
adjacent lines. The four-line structure often follows the “begin-
ning, continuation, transition, summary”process [7]. RNN encoder-
decoder is well capable of learning the dependency between qua-
train lines.

As shown in Figure 1, the entire framework is an attention-
based model. Attention mechanism allows a model to automati-
cally find the most relevant parts in the input sequence, then to
generate the target sentence [2]. The encoder model first converts
the input sequence into hidden states which contain the semantic
meaning of each character of the input. Then the decoder model
takes hidden states as input to accomplish the generation of target
sequence. The task of attention mechanism is to help the decoder
find most relevant input by taking into account the decoder’s cur-
rent state and the encoder’s hidden states. Thus, the generated
target sequence can well focus on specific relevant characters.

The simple RNNmodel has a severe problem, hard to remember
the long time dependency [14]. It is not suitable to deal with qua-
trains which have four lines. To overcome this issue, we adopt bidi-
rectional Long Short Term Memory (LSTM) model for the encoder
and another LSTM for the decoder [13–15, 17]. In this way, the
encoder-decoder model can well capture long distance patterns.

2.2 Poem generator
We use attention-based encoder-decoder model to build two mod-
ules (word-to-line and line-to-line) to generate a complete poem.
Aword-to-line module takes a word as input and then ouput a line,
but a line-to-line module produces a line according to one line or
multi-lines. Yi et al. [17] proposed a three-block system to gener-
ate a whole quatrain that was reported to work well in learning
the rhyme automatically. However, the structure seems too com-
plicated (four separate models in total). Wang et al. [15] only uses
one model for both keyword input and line input, which will not
work well when the input is a short word, as most training pairs
are line-to-line pairs. Thus, we adopt two separate models, one for
word-to-line and the other for line-to-line.

Figure 1: Encoder-Decoder model.

When generating a poem, we first use the word-to-line module
to generate the first line of the poem according to the keyword that
a user inputs. Next, the line-to-line module takes the first line as
input to generate the seconde line, and then to generate the third
and forth line according to all previously generated lines.

2.2.1 Line-to-line Module. We first introduce the line-to-line
module. We assume that we have already obtained the first line
l1. Then, we will input l1 to generate the second line l2. The in-
puts for generating l3 and l4 are l1l2 and l1l2l3, respectively.

LetX = (x1,x2, . . . ,xN) be the input line. At time i , the hidden
state for encoder is computed as Eq.(1)-Eq.(2):

hi = fLSTM (hi−1,xi), (1)
дi = [hi ;h

′
i], (2)

where h and h′ are the forward and backward hidden states in the
encoder, x is the input, and д represents the combined hidden state
for the encoder.

As mentioned in Section 2.1, we use an attention-based bidirec-
tional encoder-decoder model to build the line-to-line module. Af-
ter the hidden state д of the encoder is calculated, it merges with
the attention vector ai j into context vector c j . It is ai j that helps
the decoder to find the most relevant parts from the input. The
context vector c j is calculated by:

c j =
N∑
i=1

αi jдi , (3)

where ai j is the ‘attention‘, that at jth generation step the decoder
has, to the ith character of the input. The attention vector αi j is
computed by:

αi j =
exp(ei j)∑N

k=1
exp(ejk)

, (4)

ei j = v⊤a tanh(Wa · sj−1 +Ua · дi), (5)
where sj−1 is the hidden state of decoder at the (j − 1)th genera-
tion step; va ,Wa andUa are matrices that will be optimized in the
training process [6, 14].

Finally, at the jth generation step, the output yj and hidden vec-
tor sj are formulated by:

sj = f (sj−1,yj−1, c j), (6)

yj = p(yj−1, sj , c j), (7)

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

100

IH&MMSec ’17, , June 20–22, 2017, Philadelphia, PA, USA

where, f(·) and p(·) are update functions determined by the model
structre [14]. The output vector yj is what we mainly work on
to hide secret information, and we will discuss it detailly in next
section.

2.2.2 Word-to-lineModule. Basically, the encoder-decodermod-
els for line-to-line and word-to-line are the same. During the train-
ing process, the input sequence, no matter it is a word or a line,
will be converted into the same vector space. Because current gen-
eration systems are all based on characters, keywords are much
shorter than lines. Besides, the majority of training data are line-
to-line pairs, if we only use one model to deal with both keyword
input and line input, it will not work well when the input is a short
word [17].

Thus, we trainword-to-line pairs in a separateword-to-linemod-
ule. Of course, if we start the training of word-to-line module
from scratch, it will not capture enough semantic relations, duo
to the lack of word-to-line pairs. In practice, we start the training
of word-to-line module from a pre-trained line-to-line module.

3 STEGANOGRAPHY SCHEME
The steganography part begins when the poem generator produces
Y , the vector set of a poem line. Let us denote the line as Y =
(y1,y2, . . . ,yN), where N is the character number this line con-
tains. Each vector yi contains the information about the probabil-
ity of each character in the vocabulary being the generated one for
a certain char-position. Thus, we can hide information by selecting
several candidates for each char-position, coding them, and finally
choosing one candidate according to the secret message.

3.1 Framework of poetry steganography
There are three steps in poetry steganography, as shown in Fig-
ure 2. The first step is to set parameters that regulate poetry gen-
eration. The second step is to use the poem generator discussed
in section 2.2 to generate poetry lines, and we hide information in
step 3, by coding candidates and choosing one character based on
secret message.

Different from Ci-poetry which has many tonal patterns, 5-char
and 7-char quatrains both only have four common used patterns [7],
from which we randomly choose one pattern for generation. Info
is the secret message that we want to hide in the stego-quatrain. In
practice, Info will be converted into bit stream to guide character
selection. Key is the keyword we need to input into the word-to-
line model to generate the first line. Size is the size of candidate
pool, in other words, the maximum number of candidates we can
select for coding. Obviously, Size is the determinating factor of the
embedding rate. The larger Size is, the higher the embedding rate
will be.

In step 2, poem generator produces a poem line Y which con-
tains N vectors. N is the number of characters contained in one
line. yi contains the information about the probability of each char-
acter in the vocabulary being the next generated one. For exam-
ple, for yi = (p1,p2, ...,p |V |), where |V | is the vocabulary size, pj
means the probability of the jth character in the vocabulary being
next generated one.

Step 3 is the most critical part of our steganography system.
For each yi , we first filter out all characters that do not meet the

Figure 2: The framework of steganography system.

tone regulation, then select the most probable top-Size candidates
and finally code these candidates by assigning each one a code
(e.g. Huffman code). Next, the character whose code matches the
beginning bits of infowill be the final chosen character. In thisway,
the matched beginning bits of info are hidden in this character.

3.2 Improved char-choosing method
However, there is a severe problem during char-choosing process.
If we choose characters for each char-position separately, the gen-
erated line is very likely nonsense, especially when Size is large.
Because, the larger Size is, the more likely characters in certain po-
sitions can not be treated as a word. Next, we will discuss how to
solve this problem.

3.2.1 Templated-constrained generation. When people read a 5-
char quatrain line, theywill automatically segment the line into the
form of cc/ccc , and cc/cc/ccc for a 7-char quatrain line. In fact, Yu
et al. [18] and Wang et al. [11] built their poetry steganography
system based on this segmentation method.

Thus, it is crucial that these small blocks (cc or ccc) should be
meaningful when treated as a word. Actually, this is similar to the
word collocaiton in English language where collocation are words
that like to hang out together. In Chinese, some characters often
locate together in the same block, while some do not. Thus, we
should try to avoid characters who do not like to hang out together
being generated in the same block.

Usually, neural-based poetry generation chooses the character
with the highest probability [13, 14] at each char-position, or uses
beam search algorithm to help choose characters [15, 17]. But, if
we directly choose the candidates from the most probable top-n
characters for each char-position, most generated blocks (cc and
ccc) are nonsense when treated as a word. As a result, the quality
of generated quatrains will decrease greatly.

To solve this problem, we propose a template-constrained gen-
eration approach. For the first char-position of a block, we prepare
candidates directly from the most probable top-n characters, then
code candidates and finally choose one character based on info. We
denote the chosen character for this position as cpre . Then, when
we come to the second or third char-position of a block (cc/ccc),
we no longer choose candidates only based on their probabilities.

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

101

IH&MMSec ’17, , June 20–22, 2017, Philadelphia, PA, USA

Instead, we reorder yi by taking into account the relationship be-
tween cpre and the potential candidates in yi . Next, we will intro-
duce how to reorder yi by using inner-word mutual information.

3.2.2 Inner-word mutual information. Mutual information has
been widely used in natural language processing [4, 12]. Luo et
al. [12] used mutual information to roughly evaluate the quality
of generated poetry, and Church and Hanks [4] used mutual infor-
mation to estimate word association norms from corpora. Thus,
we use mutual information between cpre and characters in yi to
reorder yi . The higher the mutual information between cpre and
a certain character is, the upper position that character will be re-
ordered to.

The problem we need to solve is to make blocks (cc and ccc)
more like normal words. So, we use mutual information calculated
within a word to help reorder potential candidates, which we call
inner-word mutual information, and it is calculated by:

I(x ,y) = loд
p(x ,y)

p(x)p(y)
, (8)

where we estimate p(x) and p(y) by counting how many times
x and y appear in corpus, and normalizing by N , the size of the
corpus. Similarly, p(x ,y) is estimated by the number of times that
x is followed by y in the cc1 block, and normalizing by N [4].

In this way, the proposed inner-word mutual information can
ensure that generated characters in one block are more look like
natural words. Now, we can enjoy the high embedding rate achieved
by neural-based methods, but without worrying about the severe
decline in the quality of generated poems.

3.3 Steganography example
In this section, we give a simple example to show how information
is hidden during the process of poetry generation.

First, we need to determine the parameters mentioned in Fig-
ure 2. We take a 5-char quatrain line as the example. The initial
parameters are set as follows:

• Tone: PPPZZ,PZZPP.ZZPPZ,PPZZP 2;
• Info: 0110110001…(converted from ‘love‘);
• Key: 春风 (the word input in the word-to-line module);
• Size: 4 (the size of candidate pool).

At the beginning, we segment PPPZZ into PP/PZZ which will
be used as the template to regulate the char-choosing process. Then,
the keyword春风 is input into the word-to-line module to gener-
ate the first line which is denoted as Y1 = (y1,y2,y3,y4,y5). For
the first char-position y1, the tone is P , so we filter out all charac-
ters of yi whose tone is not P and select the most probable top-4
characters as candidates. Huffman coding algorithm is then ap-
plied to assign each candidate a code (see Table 1, col 1). As the
beginning bits of Info are 01,青 is chosen for this char-position.

For the second char-position y2, we first filter out characters
whose tone is not P , and then we reorder y2 by calculating the
inner-word mutual information between青 and characters in y2.
In practice, we will not do the calculation between青 and all char-
acters in y2, because this may cause us to choose these characters
1The block of ccc could be segmented into the form of c/cc or cc/c . We count two
characters’ co-occurrence only when they appear together in cc .
2There are two types of tone, P and Z, which are平 and仄, respectively.

Table 1: Details of char-choosing in steganography

Candidates
Char1 Char2 Char3 Char4 Char5
萧 00 葭 00 鸣 00 雨 00 绿 00
青 01 帆 01 迷 01 雪 01 碧 01
一 10 风 10 生 10 草 10 动 10
归 11 鸣 11 烟 11 沙 11 细 11

who are irrelevant to the input keyword but only has a highmutual
information with 青. To avoid this problem, we actually only do
the calculation for the most probable top-M characters, where M is
slightly larger3 than Size. After y2 is reordered, we again use Huff-
man coding algorithm to assign each candidate a code (see Table 1,
col 2) and finally choose风 according to Info whose beginning bits
now are 10.

For the third char-positiony3, as it is the beginning char-position
of a new block in the template (cc/ccc), its char-choosing process
is exactly the same as y1. Similarly, y4 and y5 follow the same pro-
cedure as y2. Based on Info, the final generated stego-line is青风
烟雨碧.

Next, we input the generated line l1 into the line-to-line module
to obtainY2. We follow the same procedure asY1 to get the second
generated line l2. Then, l1l2 is input into the line-to-line module
to obtain Y3, based on which the third line l3 is generated. Finally,
l1l2l3 is responsible for the generation of the last line l4.

In fact, we can also hide information during the keyword-choosing
process, the same way as char-choosing part. If we suppose that
there arem keywords in the keyword list, we can hide extra loд2m
bits of information during the keyword-choosing process.

When the receiver obtains the stego-quatrain, he only needs
the trained neural models and the keyword list that the sender
uses, to extract the secret information, by following the same char-
choosing procedure. The only difference between information hid-
ing and extraction is that the sender chooses characters according
to Info while the reciever obtains Info according to characters.

As shown in Figure 2, there are 4 initial parameters which need
to be determined to start the generation process, including Tone,
Info, Key and Size. For the receiver, Tone can be directly told by
the received quatrain. Info is what the receiver wants to obtain.
We suppose that the keyword list has m keywords and Size has n
possible values, which means that there are m·n combinations in
total. If the keyword and the value of Size that the receiver uses are
not the same as the sender’s setting, either the extraction process
can not be finished, or the extracted message is nonsense. In other
words, only the right combination can extract the right message.
Thus, the receiver only needs to try out all combinations to extract
the hidding information.

If the receiver can not afford too much time complexity, it is
recommended to use a small keyword list and set Size to a fixed
value. In short, m and n are flexible to be adjusted based on the
user’s own circumstance.

3Empirically, M is set to 1.5 or 2 times of Size. M is a pre-determined parameter by
both the sender and receiver, so it is fixed during all stego-communications.

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

102

IH&MMSec ’17, , June 20–22, 2017, Philadelphia, PA, USA

4 EXPERIMENTS
4.1 Dataset
There are many classical Chinese poetry corpora on the Internet,
but quatrains written in different periods have different styles. So,
we only collected quatrains from Tang dynasty. The corpus we
used contains 74,474 quatrains in total, and we randomly selected
2,000 quatrains as validation set, and the rest as training set.

For the word-to-line module, we selected the top-1000 most fre-
quently used words as our keyword list, and for each word, we se-
lected 150 lines that contain thisword to buildword-to-line pairs [17].
For the line-to-line module, we extracted 3 line-to-line pairs from
each quatrain. For example, from a quatrain L=(l1,l2,l3,l4), we can
get three pairs, <l1, l2>,<l1l2, l3> and <l1l2l3, l4> [15].

4.2 Training and decoding
During the training, we selected the top-8000 frequent characters
as our vocabulary which is shared by both input and target sides.
We built our model based on Keras. The word embedding layer
has 512 units, and both the encoder and decoder contain 512 hid-
den units. The model was trained with Adagrad algorithm, where
the minibatch size was set to 128. We selected the final model
according to the loss on the validation set [14, 15]. For the line-to-
line module, we trained 5-char and 7-char quatrains on one model,
but for the word-to-line module, we trained 5-char and 7-char qua-
trains on two separate models.

In the decoding, we are supposed to input the generated line
into the line-to-line model. However, due to the process of infor-
mation hiding, we may select a character who has low probability.
For example, when Size is 32, the final chosen character might be
the one whose probability only ranks 32th . These low ranking
characters actually, to some extent, have deviated from the top
ranking character in the meaning. The larger Size is, the more
likely the final chosen character will deviate from the input key-
word in its meaning. In practice, we do not input the original gen-
erated line into line-to-line module to avoid the deviation. Instead,
for each line li , we forge a line l ′i whose characters are all selected
from the top-1 candidate. The forged line l ′i will be input into line-
to-line module rather than li . In this way, the whole quatrain is
more likely to reveal the meaning of the input keyword.

5 EVALUATIONS
To evaluate a steganography system based on text generation, there
are two important factors: one is the naturalness of generated text;
the other is the embedding rate. Next, we evaluate our proposed
method by comparison between different poetry steganography
algorithms in these two factors.

5.1 Human evaluation
To accurately evaluate the quality of machine generated poetry is a
notorious problem. Most researchers rely on human evaluation, in
which experts are invited to evaluate generated poems with regard
to their fluency, poeticness, meaning, etc. [14, 15, 17, 19]. However,
our system is steganography-oriented, and our goal is to generate
poems that will not attract suspicions from the third party. Thus,

we use the the famous Turing Test to evaluate our model, which is
also adopted by [13, 15].

We designed a questionnairewhich contains quatrains from four
sources. The subject was asked to judgewhether these poemswere
created by machine or written by a poet. According to how many
machine-generated poems are identified as human created, we can
evaluate the naturalness of poems generated by a specific steganog-
raphy method.

We chose two poetry steganography methods and human cre-
ated poems as baselines. All methods based onmachine generation
utilized the same corpus and parameter setting4. We selected eight
poems from each source, containing four 5-char quatrains and four
7-char quatrains. So, each questionnaire includes 32 poems.

• Segment-based method [11]
• Markov-based method [12]
• Poet created poems
• Our method

To make the evaluation results more convincing. Subjects are
all master or PhD students who are well educated. Moreover, we
cleaned 5 returned questionnaires and obtained 20 valid samples
out of 33 returned ones. The results are shown in Table 2.

Table 2: Human evaluation

Identified as H Identified as M
Segment-based 21.3% 78.7%
Markov-based 33.8% 66.2%
Our method 34.3% 65.7%

Poet 63.1% 36.9%
H: human-created, M: machine-generated

We can clearly see that, our method weakly passed the Turing
test whose criterion is to fool people in no less than 30% of asked
questions.

5.2 Embedding rate
Embedding rate is highly related to howmuch information we can
hide in a stego-text. Previous methods have either very low em-
bedding rate or flaws in the quality of generated texts. For exam-
ple, the Markov-based method [12] can produce poems compara-
ble to us in poem quality, but it has low embedding rate. As for
the segment-based method [11] which has high embedding rate,
its poem quality is far behind us.

The high embedding rate of our approach stems form that it is
char-based generation, in which we can hide information at each
char-position. Actually, apart from the generation process of the
poem body, information can also be hidden when we choose the
initial keyword from the keyword list. The keyword list we used
in the experiment contains 1,000 words, so the embedding rate can
be calculated by:

4The size of candidate pool for Markov-based and our neural-based method were both
set to 32.
5Questionnaires that were finished in less than 2 minutes or more than 30 minutes
were excluded. We also did not take into consideration the ones whose accuracy is
below 50%.

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

103

IH&MMSec ’17, , June 20–22, 2017, Philadelphia, PA, USA

Figure 3: The comparison of embedding rate between differ-
ent methods.

ER =
4N × loд2Size + loд21000

4(N + 1) × 16 , (9)

where ER is the embedding rate, Size is the size of candidate pool,
N is the number of characters contained in one poem line. The
comparison of embedding rate between differentmethods is shown
in Figure 3. Obviously, our method outperforms other approaches
and the embedding rate can reach about 35.0% (when Size=64, N=7).

5.3 Generation example
Finally, in Table 3, we show a 5-char quatrain generated by neural-
based steganography. According to its poetic meaning, we name
it as ‘Returning Night‘, which is归夜 in Chinese.

Table 3: A 5-char quatrain generated by neural-based
steganography

归夜 Returning Night
风窗烟树中 Out the window stood the tree in mist
柔静雨光斑 Soft and quiet is the shining rain
夜里吹生下 Playing the flute in the night
归人乱浪宽 Traveling back from wide waves

6 CONCLUSION
In this paper we have presented a method that uses neural-based
poetry generation to hide information. Attention-based neural
model is the state-of-the-art approach in poetry generation. Even
though it can produce poems that are coherent and semantically
consistent, directly applying it to steganography does not work
well. Thus, we propose a template-constrained generation method
and use inner-word mutual information to alleviate the quality de-
cline caused by steganography. Experimental results show that
our method yields stego-poems with high quality, comparable to
the state-of-the-art poetry steganography, but has a much higher
embedding rate. In the future, we would like to continually im-
prove the quality of generated poems, and explore poetry steganog-
raphy using other genres, e.g. English sonnets or even normal-
style texts.

7 ACKNOWLEDGEMENT
We thank all reviewers for their constructive reviews. Many thanks
to Yixuan Wang for the translation of poem exapmle. This work
is supported by the National Natural Science Foundation of China
(Grant Nos. U1536207, U1536115 and U1536113).

REFERENCES
[1] A.M. Alattar and O.M. Alattar. 2004. Watermarking electronic text documents

containing justified paragraphs and irregular line spacing. Electronic Imaging
2004. International Society for Optics and Photonics (2004), 685–695.

[2] D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

[3] M. Chapman and G. Davida. 1997. Hiding the hidden: A software system for
concealing ciphertext as innocuous text. International Conference on Information
and Communications Security. Springer Berlin Heidelberg (1997), 335–345.

[4] K.W. Church and P. Hanks. 1990. Word association norms, mutual information,
and lexicography. Computational linguistics 6, 1 (1990), 22–29.

[5] J. Cong, D. Zhang, and M. Pan. 2010. Chinese Text Information Hiding Based
on Paraphrasing Technology. Information Science and Management Engineering
(ISME), 2010 International Conference of. IEEE (2010), 39–42.

[6] S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean, and L. Heck. 2016. Con-
textual LSTM (CLSTM) models for Large scale NLP tasks. arXiv preprint
arXiv:1602.06291 (2016).

[7] J. He, M. Zhou, and L. Jiang. 2012. Generating Chinese Classical Poems with
Statistical Machine Translation Models. AAAI (2012).

[8] Y.W. Kim, K.A. Moon, and I.S. Oh. 2003. A Text Watermarking Algorithm based
onWord Classification and Inter-word Space Statistics. ICDAR (2003), 775–779.

[9] I.S. Lee and W.H. Tsai. 2008. Secret communication through web pages using
special space codes in HTML files. International Journal of Applied Science and
Engineering 6, 2 (2008), 141–149.

[10] Y.L. Liu, X.M. Sun, G. Gan, and W. Hong. 2007. An efficient linguistic steganog-
raphy for Chinese text. IEEE International Conference on Multimedia and Expo
(2007), 2094–2097.

[11] Y.C. Liu, J. Wang, Z.B. Wang, Q.F. Qu, and S. Yu. 2016. A technique of high
embedding rate text steganography based on whole poetry of song dynasty.
International Conference on Cloud Computing and Security (2016), 178–189.

[12] Y.B. Luo, Y.F. Huang, F.F. Li, and C.C. Chang. 2016. Text Steganography Based on
Ci-poetry Generation Using Markov Chain Model. KSII Transactions on Internet
and Information Systems 10, 9 (2016), 4568–4584.

[13] Q.X.Wang, T.Y. Luo, and D.Wang. 2016. CanMachine Generate Traditional Chi-
nese Poetry? A Feigenbaum Test. Advances in Brain Inspired Cognitive Systems:
8th International Conference, BICS 2016 (2016), 34–46.

[14] Q.X. Wang, T.Y. Luo, and D. Wang. 2016. Chinese song iambics generation with
neural attention-based model. arXiv preprint arXiv:1604.06274 (2016).

[15] Z. Wang, W. He, H. Wu, H.Y. Wu, W. Li, H.F. Wang, and E.H. Chen. 2016. Chi-
nese poetry generation with planning based neural network. arXiv preprint
arXiv:1610.09889 (2016).

[16] P. Wayner. 1992. Mimic functionsWayner P. Cryptologia 16, 3 (1992), 193–214.
[17] X. Yi, R. Li, and M. Sun. 2016. Generating chinese classical poems with rnn

encoder-decoder. arXiv preprint arXiv:1604.01537 (2016).
[18] Z.S. Yu and L.S. Huang. 2009. High Embedding Ratio Text Steganography by

Ci-poetry of the Song Dynasty. Journal of Chinese Information Processing 23, 4
(2009), 55–62.

[19] X. Zhang and M. Lapata. 2014. Chinese Poetry Generation with Recurrent Neu-
ral Networks. EMNLP (2014), 670–680.

Session: Data Hiding in Natural Language, Watermarking IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

104

	Abstract
	1 Introduction
	2 Background
	2.1 Encoder-Decoder model
	2.2 Poem generator

	3 Steganography Scheme
	3.1 Framework of poetry steganography
	3.2 Improved char-choosing method
	3.3 Steganography example

	4 Experiments
	4.1 Dataset
	4.2 Training and decoding

	5 Evaluations
	5.1 Human evaluation
	5.2 Embedding rate
	5.3 Generation example

	6 Conclusion
	7 Acknowledgement
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 6
 Mask co-ordinates: Horizontal, vertical offset 26.94, 714.42 Width 578.60 Height 26.94 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 6

 CurrentAVDoc

 26.9367 714.4222 578.6011 26.9368

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 6
 5
 5

 1

 HistoryList_V1
 qi2base

