
SpotON: Just-in-Time Active Event Detection on
Energy Autonomous Sensing Systems

Yubo Luo
Department of Computer Science

UNC Chapel Hill
yubo@cs.unc.edu

Shahriar Nirjon
Department of Computer Science

UNC Chapel Hill
nirjon@cs.unc.edu

Abstract—We propose SpotON, which is an active event detec-
tion system that runs on harvested energy and adapts its sleeping
cycle to match the distribution of the arrival of the events of
interest. Existing energy harvesting systems wake up periodically
at a fixed rate to sense and process the data to determine if
the event of interest is happening. In contrast, SpotON employs
reinforcement learning to learn the pattern of events at run-time
and uses that knowledge to wake itself up when events are most
likely to happen. Being able to remain asleep more often than
a fixed wake-up system, SpotON is able to reduce energy waste,
increase the amount of harvested energy, and be able to remain
active for longer period in time when the events of interest are
more likely to occur. We conduct a simulation-driven experiment
to compare our proposed solution with a fixed-schedule system
and results show that SpotON is able to capture 2–5X times more
events and is 3–12X more energy-efficient than the baseline.

Index Terms—Energy harvesting, Q-learning, Event detection.

I. INTRODUCTION

As the development of computational power, computing
algorithm and hardware, more and more stand-alone and sus-
tainable applications are emerging, pushing the world forward
to the ultimate instantiation of the Internet of Things (IoT)
– the “Smart Dust”. Smart Dust is a system of many tiny
microelectromechanical systems that are energy autonomous
[3]. However, current IoT world is dominated by battery-
powered systems which are bulky and unsustainable. Energy
harvesting is one of the ways that can lead us to the final
instantiation of IoT.

Energy harvesting systems harvest energy from various
energy sources, such as RF, piezoelectric or solar. It eliminates
the need for replacing batteries and enables energy autonomy
which is crucial to long-term sensing applications.

To achieve energy autonomy, we have to overcome chal-
lenges resulting from energy harvesting. First, computation in
energy harvesting systems is intermittent and this causes prob-
lems because most computing algorithms are long-running
programs. There is literature addressing how to enable correct
execution of existing long-term running programs on energy
harvesting systems by guaranteeing atomicity, data consis-
tency, forward progress [7], [8]. Second, energy supply in
energy harvesting systems is so limited that energy efficiency
is crucial. Dewdrop [4] takes iterative tasks as a scheduling
problem and dynamically changes the starting voltage based

t

t

t

Dynamic Strategy

Fixed Strategy

H
ar

ve
st

e
d

En
e

rg
y

H
ar

ve
st

e
d

En
e

rg
y

Ev
e

n
t

P
ro

b
ab

ili
ty

Wake up
Sleep

Wake up
Sleep

Fig. 1. Comparison between fixed and dynamic strategies. The fixed strategy
can only detect a small fraction of total events but the dynamic strategy only
wakes up during event-active time intervals and thus detects more events.

on the size of the next task to improve energy efficiency.
Capybara [8] deploys an array of capacitors with different
capacitance and dynamically changes the capacitance of the
system. Mayfly [10] considers the timeliness of data and
discards stale data to avoid wasting energy in learning outdated
data. Third, event detection is a typical and important task in
IoT world, but active event detection has yet not been well
studied. Active event detection means that the event itself can
not produce a trigger signal to wake up the micro-controller
(MCU), and it requires the MCU to actively sense the event.
More detailed explanation about passive and active event
detection is described in Section II. There is one approach
called Monjolo [5] addressing passive event detection in
energy harvesting systems. It uses the energy harvested from
the event itself as a trigger to wake up the system and thus
avoids active sensing. However, Monjolo only applies to cases
where the event itself can generate a certain amount of energy
that Monjolo uses as a trigger. As far as we know, there is no
literature addressing cases where the target event itself can not
serve as a trigger. Thus, we propose SpotON, the first energy
harvesting system that deals with active event detection by
waking up just in time.

Most existing intermittently powered systems have pre-
defined turn-on and turn-off thresholds, which means the
system periodically wakes up at each capacitor charging cycle.
Though some of them dynamically change the thresholds
according to the complexity of the next task, they are still

in the category of periodically charging and discharging, as
shown in Figure 1. The key to enabling active event detection
in energy autonomous systems is to ensure that there is
enough energy left in the storage capacitor to power up the
microcontroller when the event is about to happen. If the
system magically knows when the event is about to happen,
it can wake up more frequently during this time interval but
remain powered-off more frequently at other times. SpotON
learns the event pattern, predicts when the event is more likely
to happen, keeps the system in powered-off more frequently
when events are not active, and saves surplus energy in a
dedicated capacitor array which can compensate the massive
energy consumption of frequent waking-ups when events are
active. In this way, we can borrow energy harvested from
previous charging cycles.

In real-life scenarios, events behaves in a pattern which
may change over time. SpotON uses a reinforcement learning
algorithm – Q-learning to learn the event pattern online. If
the event pattern changes over time, SpotON learns the new
pattern and updates the system, making itself a “real-time”
event detector.

II. PROBLEM

The key to enabling active event detection is to decide when
to wake up the MCU. One important part of the waking up
process is the trigger mechanism. We classify the waking
up trigger into the following three categories [6]: periodic,
opportunistic and event-based.

The periodic trigger wakes up the MCU at a fixed period,
which requires a predictable energy supply. This type of
trigger is rare in intermittent systems. The opportunistic trigger
is common in intermittent systems which depends on the
harvestable energy and a predefined voltage threshold. If
the voltage of the storage capacitor reaches Vth, the trigger
is activated, and the MCU keeps running until the voltage
decreases to Vmin. This type of trigger usually requires a
dedicated voltage detection circuit and a power management
module [8]. The event-based trigger wakes up the MCU based
on an expected event. The system needs to harvest enough
energy before a trigger event happens in order to be woken
up successfully. If an event happens before enough energy is
stored up the system will miss this event. The detection rate of
this type of trigger is bounded by the capacitor recharging rate
[5], [6]. SpotON can be considered as an event-based trigger
but it applies to entirely different applications. The event-based
trigger mentioned in [5], [6] only applies to cases where the
event itself can actively activate a trigger signal, and this signal
is leveraged to wake up the MCU. This trigger-activating
process does not involve MCU. Possible applications for this
type of event-based trigger include door opening detection [6]
where the action of opening the door itself can vibrate a piezo
sensor and generate a trigger signal and airflow monitoring
[11] where the airflow itself can also vibrate a piezo sensor
and generate a trigger signal. This type of sensing is passive.
The MCU just passively waits for an waking-up signal.

However, there are many applications whose target event
can only be passively captured by active sensing controlled by
the MCU, e.g., wildlife watering monitoring and environment
noise detection. This type of applications requires active
sensing from the MCU. SpotON is specially designed for this
type of event detection. It learns the event pattern and uses it
as an internal event-based trigger. SpotON only benefits cases
where the event happens in a certain pattern that we can use
some learning algorithm to learn. If the target event happens
randomly without any pattern, then it is not a proper candidate
application for SpotON.

We call our internally triggered waking-up approach a
dynamic strategy, compared to the commonly used approaches
which are static or fixed. Current fixed systems use up all
energy immediately once they are charged to a threshold
voltage and wake up. They do not borrow energy from pre-
vious charging cycles. By saying SpotON a dynamic strategy,
we do not mean that the threshold voltages or the storage
capacitance is dynamic, we mean that after the system has
already harvested enough energy to wake up, it dynamically
chooses to wake up at which frequency level, e.g., high
frequency, low frequency or even not waking up, based on
the learned event pattern. In this way, SpotON is able to wake
up just in time.

III. DESIGN OVERVIEW/ IMPLEMENTATION

To wake up the system in a proper time at a proper
frequency based on the event pattern, we use reinforcement
learning to implant this intelligence into SpotON.

Choose an Action

Initialize Q-table

Perform Action

Measure Reward

Update Q-table

Choose a waking-up
frequency f

Wake up at f in this
entire state

Count how many
events it detects

a1 a2 … am

s1 0 0 … 0

s2 0 0 …. 0

… … … …

sn 0 0 … 0
St

at
es

Actions

(a) (b)

Fig. 2. (a) Workflow of Q-learning [1]; (b) Initialized Q-table.

A. Q-Learning

Q-learning is employed to help SpotON learn the event
pattern and make waking-up decisions. Q-learning [9] is an
effective way of making optimal decisions to achieve the
best reward based on past observations. The workflow of Q-
learning is described in Figure 2(a).

The learned experience is stored in a Q-table which
contains the weight for each state-action pair. We use
S = {s1, s2, ..., sn} to denote the set of states and A =
{a1, a2, ..., am} the set of actions. In our case, one state si
means a specific time interval. Adjacent states are adjacent
time intervals. For example, if the time duration of each state is
one hour and si is 9-10am, then si+1 means 10-11am and si−1

means 8-9am. Each state has the same duration length. One
action aj means a specific waking-up frequency. It could be

0

2000

4000

6000

8000

10000

[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]

To
ta

l C
at

ch
e

s

[SD, ED] (sigma=0.3)

Fixed Dynamic GT

0

500

1000

1500

2000

2500

3000

3500

4000

[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]

To
ta

l C
at

ch
e

s

[SD, ED] (sigma=0.1)

Fixed Dynamic GT

(a) Total catches

0

0.2

0.4

0.6

0.8

1

[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]R
at

io
 o

f
C

at
ch

e
s

[SD, ED] (sigma=0.1)

Fixed Dynamic GT

0

0.2

0.4

0.6

0.8

[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]R
at

io
 o

f
C

at
ch

e
s

[SD, ED] (sigma=0.3)

Fixed Dynamic GT

(b) The ratio of total catches to total waking-up time units

Fig. 3. Simulation results. There are two simulation settings. One contains 100 events sampled from [µ = 12, σ = 0.1] and 100 events sampled from
[µ = 15, σ = 0.1]. The other contains 100 events sampled from [µ = 12, σ = 0.3] and 100 events sampled from [µ = 15, σ = 0.3]. SD is state duration
and ED is event duration. The time unit is one second.

waking up MCU once every minute, or once every 10 minutes
or once every hour, etc. Both the state duration and the waking-
up frequency for each action are application-specific.

Q-learning is a table-based reinforcement learning algo-
rithm. Q-table contains the weight of each state-action pair
and these weights are updated at each step by calculating the
reward gained from each step. One step corresponds to one
state. The update equation of Q-table is as follows:

Qij = Qij + α[Rij + γ max
k=1,..,m

(Qi+1,k)−Qij] (1)

where Qij denotes the weight of the state-action pair of
(si, aj); Rij denotes the reward gained in state si by taking
action aj ; α denotes learning rate; γ denotes discount rate;
max calculates the maximum expected future reward given
the new state and all possible actions at that new state.

Figure 2(b) shows the initialized Q-table with zeros which
can also be initialized by training on an off-line dataset.
Training a Q-table using off-line dataset before deployment
saves the time spent in learning the event pattern from scratch.

B. Online Adaptive Ability

In a real life scenario, the event pattern is usually not fixed,
and it may change as time goes by. For example, in the
application of wildlife watering monitoring, wildlife in the
desert comes to water site to drink water, and our system wants
to take as many pictures containing target wildlife as possible.
However, wildlife’s watering habit varies in different seasons.
The system must be capable of online learning to keep the
Q-table updated to the real-time environment.

In Q-learning, there is a parameter called ε related to action-
taking decisions. At the beginning of each step, a random
number r is generated and compared to ε. If r > ε the system
takes an action based on Q-table. Otherwise, a random action
is taken. The value of ε keeps decreasing to a small number
as Q-table is more and more well-trained. Once ε decreases
to its minimum value, the system is well-trained, and the Q-
table stops updating. Larger ε value means the system explores
more and smaller ε value means the system exploits more. To

implant online learning ability to SpotON we need to reset this
ε regularly. As for how often we should reset ε, it depends on
the application.

IV. EVALUATION

We have conducted computer simulations to evaluate the
performance of SpotON. Our simulations are based on a
python package called gym which is a toolkit for developing
and comparing reinforcement learning algorithms [2]. The
most important parameters are as follows:
• state duration (SD): how long one state lasts;
• event duration (ED): how long one event lasts;
• energy bank capacity (EBCap): how much energy the

storage capacitor can save at maximum;
• event distribution parameters (µ, σ): we assume the event

obeys normal distribution. µ and σ are the mean value
and the standard deviation respectively.

To simplify the simulation, we assume our system har-
vests solar power, the time unit is one second and the total
simulation time is one day. The energy consumption rate is
10 times as the energy storage rate, which means 10-second
charging can support 1-second discharging. Solar energy is
only harvestable during the daytime, e.g. from 6 am to 8 pm.
We set the EBCap to 2-hour continuously charging, which
means the capacitor can at maximum store energy harvested
from two hours.

If the system wakes up at one time unit and there is an
event happening, then we consider this time unit a catch or a
positive waking-up. The number of catches or positive waking-
ups is one of our evaluation metrics, and it means how many
time units the system wakes up when there is an event. The
ratio of positive waking-ups to total waking-ups is our second
metric. The reason why we use these two evaluation metrics
is that in real life scenarios we care more about if the MCU
wakes up at the event-happening moment, which is related to
the efficiency of energy usage. Taking the wildlife watering as
an example, the system wakes up and takes a picture of the
water site. The more pictures that capture an animal, the more

efficiently the system uses the harvested energy. Energy used
for waking up without capturing an event is wasted. There is a
negative reward for waking up without a catch and a positive
reward for waking up with a catch.

We compare SpotON (Dynamic) with the other two sys-
tems, the ground truth (GT) and the fixed system (Fixed). The
ground truth system is powered by a battery so it can catch
all time units when there is an event, and its total waking-ups
equal to the length of the simulation which is 24 hours in
our case. The Fixed system is the existing energy harvesting
system which wakes up after the capacitor is fully charged
and uses up all energy immediately.

Figure 3(a) demonstrates that our SpotON has more catches
than the fixed system. Especially in the case of σ = 0.1,
SpotON has around 5 times as many event catches as the fixed
system. Compared to the ground truth, there are still a lot of
missed time units where there are events. But remember our
goal is to make as many positive waking-ups as possible, rather
than capturing all event-happening time units. We also notice
that SpotON has better performance for event distribution with
smaller standard deviation. The reason is that smaller standard
deviation means the data are more converged and it is easier
for Q-learning to learn the event pattern.

TABLE I
AVERAGED RESULT FROM ALL SIMULATION RESULTS

Number of catches The ratio of positive waking-ups
σ = 0.1 σ = 0.3 σ = 0.1 σ = 0.3

Fixed 256 515 6.5% 13.2%
Dynamic 1225 1114 79.6% 53.4%

GT 2855 5848 3.3% 6.8%

Figure 3(b) shows the ratio of positive waking-ups to total
waking-ups. SpotON significantly outperforms the other two
systems. The highest ratio is 0.92 which means in that case
92% of SpotON’s waking-ups happen when there is an event.
The fixed system has only 10% positive waking-ups on average
which means 90% of harvested energy is wasted in useless
waking-ups. As expected, the ground truth system has the
lowest energy usage efficiency because it is powered up all
the time. Table I shows the averaged result from all results.

V. FUTURE PLAN

Our future work includes tuning the parameters of the Q-
learning algorithm, considering the time, energy, and complex-
ity of event detection algorithms, and implementation of the
system on a real hardware.
• Algorithm parameters: In the preliminary experiments,

we find that there are still opportunities for improvements.
In some settings, there are unused energy in the capacitor
at the end of the experiment. Currently, we use the same
reward parameters for all simulations. Tuning the reward
parameter in a more fine-grained way can make the
system use up all harvested energy and thus yield even
better results.

• Generalization: currently, we assume that the events are
easily detected. For example, if we consider loud noises

as events of interest, we only need to use an audio sensor
and compare the signal amplitude to a threshold. If it is
higher than the threshold, we consider it as an event.
However, to generalize SpotON to other applications,
we have to consider the energy consumption due to
executing the recognition algorithm, e.g. image-based
event detection where image recognition is needed to
figure out if a picture contains an object or an event we
are interested in and this consumes much more energy
than merely sensing audio signals.

• Hardware: one crucial prerequisite for SpotON is that
we must have a large and dynamic storage capacitor.
Let’s look at the following example: we want to monitor
wildlife watering, and we assume that the wildlife of in-
terest come to the water site mostly in the afternoon. Our
system gradually learns to wake up more frequently in
the afternoon and sleeps more in the morning. The energy
harvested in the morning must be stored somewhere and
then be used to wake up MCU more frequently in the
afternoon. Thus, saving such energy would require a vari-
ant design of Capybara [8] that can dynamically change
the storage capacitance. This requires a complete energy
management unit facilitated by specialized hardware and
software design.

In summary, SpotON opens a new way for energy au-
tonomous systems to detect events actively by waking up just
in time and by adapting its internal model of the environment
as the real-world environment changes. We also plan to
implement SpotON on different energy harvesting platforms.

REFERENCES

[1] Diving deeper into reinforcement learning with q-learning.
https://medium.freecodecamp.org/diving-deeper-into-reinforcement-
learning-with-q-learning-c18d0db58efe. Accessed: 2019-02-20.

[2] Gym toolkit. https://gym.openai.com/. Accessed: 2019-02-20.
[3] Smart dust - wikipedia. https://en.wikipedia.org/wiki/Smartdust. Ac-

cessed: 2019-02-20.
[4] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an energy-

aware runtime for computational rfid. In Proc. USENIX NSDI, pages
197–210, 2011.

[5] B. Campbell, M. Clark, S. DeBruin, B. Ghena, N. Jackson, Y.-S. Kuo,
and P. Dutta. perpetual sensing for the built environment. IEEE Pervasive
Computing, 15(4):45–55, 2016.

[6] B. Campbell and P. Dutta. An energy-harvesting sensor architecture
and toolkit for building monitoring and event detection. In Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings, pages 100–109. ACM, 2014.

[7] A. Colin and B. Lucia. Chain: tasks and channels for reliable intermittent
programs. ACM SIGPLAN Notices, 51(10):514–530, 2016.

[8] A. Colin, E. Ruppel, and B. Lucia. A reconfigurable energy storage
architecture for energy-harvesting devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 767–781. ACM,
2018.

[9] M. E. Harmon and S. S. Harmon. Reinforcement learning: A tutorial.
Technical report, WRIGHT LAB WRIGHT-PATTERSON AFB OH,
1997.

[10] J. Hester, K. Storer, and J. Sorber. Timely execution on intermittently
powered batteryless sensors. In Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems, page 17. ACM, 2017.

[11] T. Xiang, Z. Chi, F. Li, J. Luo, L. Tang, L. Zhao, and Y. Yang. Powering
indoor sensing with airflows: a trinity of energy harvesting, synchronous
duty-cycling, and sensing. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, page 16. ACM, 2013.

