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ABSTRACT

In this paper, we argue that the fusion of machine learning (ML)
and batteryless computing systems enables true lifelong learning
in mobile devices. The lack of learning from experience in current
batteryless systems makes them ignorant of changes in their op-
erating environment. Due to high communication cost, latency,
privacy, and dependency issues of offloading computation to an
edge device, on-device training is a solution for batteryless sys-
tems to learn and adapt in dynamically changing environments.
Combining batteryless systems and ML is however a challenging
task. Sporadic energy supply and limited resources in a batteryless
system cause execution-discontinuity and data-constraints in ML
processes. To understand these challenges, we identify suitable ML
tasks for such systems and study the energy producers, i.e., har-
vesters, and consumers, i.e., intermittently executable tasks in a
ML pipeline. Using a trace-driven simulation, we demonstrate the
feasibility of on-device training of a batteryless learner.

CCS CONCEPTS

« Computing methodologies — Machine learning; - Com-
puter systems organization — Embedded hardware; - Hard-
ware — Sensor devices and platforms; Renewable energy;
PCB design and layout.

1 INTRODUCTION

With the growth of the Internet of Things (IoT), the number of con-
nected embedded systems around us is increasing exponentially. A
large number of IoT devices are battery-powered due to the need
of mobility. Recharging or replacing batteries of a large number of
devices is inefficient and inconvenient. To address this energy issue,
batteryless systems have been proposed. Unlike battery-powered
devices, batteryless systems can operate, in principle, forever — as
long as the harvesting conditions are met. The burden of battery-
related maintenance being lifted, such systems can be deployed in
many applications where a battery-powered system is not feasible,
e.g., monitoring wildlife, remote surveillance, and implantable de-
vices. The majority of existing batteryless devices are used in sensor
networks. They merely sense data and send them to another system
via a network. Some of these systems perform slightly advanced
computational tasks, e.g., analyzing sensor data and performing
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an action accordingly. Recently, on-device deep-inference has been
demonstrated in a batteryless system [3]. However, none of these
systems adapt to the changes in the environment.

We define learning for batteryless systems as their ability to rec-
ognize patterns, anomalies, or otherwise useful information (e.g.,
application-specific knowledge) from observed data over a long
period by monitoring the surrounding environment. Our goal is to
develop batteryless systems embodying this definition of learning
and to show its feasibility through experiments. The fusion of ma-
chine learning (ML) and batteryless systems enables true lifelong
learning in mobile devices. The capability of independently learn-
ing without any concern for energy and any assistance from an
external device reduces the complexity of smart device deployment.
For instance, wildlife monitoring devices are highly difficult to
track and reprogram once they are deployed. By using batteryless
learning devices, animal habits can be reliably learned through-
out an animal’s lifetime without requiring human interventions.
Other examples include monitoring and pattern mining in harsh
environments or places without an easy access.
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Figure 1: (a) Custom PCB (b) Prototype Learning Shoe (c)
Power generated from Shoe

Combining ML with a batteryless system poses unique chal-
lenges. First, sporadic energy harvesting pattern enforces a ML
algorithm to run intermittently and the system can miss important
incoming data. Thus, the presence of both data occurrence and en-
ergy availability needs to be ensured. Second, in order to learn with
constrained resources, a device needs to make necessary decisions
by itself regarding which data to learn and when. Third, the type of
learning algorithm a device can execute is limited since the supervi-
sion or ground truth is generally not available. Suitable options are
online unsupervised, semi-supervised or reinforcement learning.
A learning algorithm’s computational complexity, learning time,
or amount of data to learn should be carefully taken into account
based on the energy budget.

In order to analyze the feasibility of batteryless learning systems,
accurate measurements of energy produced by a harvester and
consumed by a learner has to be attained. We study the amount
of harvested energy from a variety of harvesters and measure the
amount of consumed energy by different machine learning sub-
tasks of an online unsupervised learning algorithm; e.g. K-means
clustering; from both algorithmic and energy-level perspectives.
We implement a prototype applications of batteryless learning, i.e.,
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a learning shoe, that use a custom PCB for energy management. Fi-
nally, we use them in a trace-driven simulated learning application
to demonstrate the feasibility of batteryless learning.

2 SYSTEM DESIGN

o Custom PCB Hardware We have developed an energy-harvesting
platform which harvests energy from ambient sources(e.g. solar,
piezo-electric) to execute machine learning operations. As shown in
Figure 1(a), the board consists of a microcontroller, sensors, an exter-
nal non-volatile memory, and a supercapacitor. The system follows
Hibernus [1] design to save the system status during intermittence.

Model Training. Overhead Total

Sample  Sample Accuracy Precision Recall Energy g Time | g Time | Time
() Size () () @ () (hh:mm) Y P (hhomm) | (hhimm)

10 35 52 39.33 97.75 11 120 00:17 7 77 00:11 00:28

20 70 52 a2 100 2075 237 0034 |14 152 0022 | 00555

30 105 57 40.47 100 32.61 355 00:50 21 228 00:33 01:23

40 140 53 48 100 4348 473 01:07 28 304 00:43 01:50

50 175 6467 50.67 100 5430 590 0124 |35 380 0054 | 02:17

60 210 7233 50 100 65.25 709 01:40 42 457 01:05 02:45

70 245 73.67 50.67 100 76 826 01:57 49 533 0L:16 03:12

80 280 7733 5467 100 8685 944 0213 |56 609 01:26 | 03:39

90 315 77.33 54.67 100 97.70 1062 02:30 63 685 01:37 04:07

100 350 80 60 100 10854 1180 0247 | 70 761 0148 | 04:34

Table 1: The estimated energy, time, and performance of the
learner for various amounts of training is shown.

e Custom Shoe Prototype We build a prototype learning shoe
which harvests thermo-electric and piezo-electric energy. We in-
clude a thermal source to gather power from body heat gradient
even when the wearer is not stepping. The shoe consists of six
piezo disks and three thermoelectric generators (TEG) (connected
in parallel), as shown in Figure 1(b). This prototype is envisioned
to be used in applications such as gait analysis, activity recogni-
tion, and user identification. We conduct a detailed experiment to
measure the power generated by the prototype shoe. We simulate
five gait positions, i.e., walking, running, stepping stairs, standing
and sitting, for 10 minutes each as shown in Figure 1(c).

3 ENERGY CONSUMPTION

Every machine learning task consists of the following methods —
gathering data, preparing data (data selection, feature extraction),
training a model, quality assessment, and prediction. On the other
hand, every intermittently-powered system has some overhead,
e.g., storing and retrieving program state. In this section, we study
the power consumption of these methods to understand the char-
acteristics of an intermittent learner.

Some common sensors used in batteryless devices are light sen-
sor (2.34uW), temperature sensor (27.64W), audio sensor (0.65mW),
accelerometer (0.9 mW), pressure sensor (27uW), image sensor
(4mW), and CO sensor (454W). After collecting the data, there
are four major methods in a machine learning task — extracting
features, learning a model, evaluating the model and predicting
the result. As features we calculate mean and standard deviation
of data as features which consumes 22.25y J. Due to the low en-
ergy budget, we avoid redundant data processing by measuring
the diversity of a data sample using the standard deviation of the
distances between consecutive samples(0.011 pJ). We implement
online k-means clustering and divide it into training (updating
cluster centroid) and predicting (predicting cluster) phases. These
consume 108.5 mJ and 112.75 pJ respectively. We assess the quality
of the model using weighted inter-intra cluster index (20.68 J). We
consider a data buffer size of 350 samples and it requires 385 mJ and
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397 uJ for writing and reading 1KB of system state in the internal
EEPROM. By using external EEPROM this consumption changes
to 15-241 m] and 35 m]J for writing and reading respectively.

4 SIMULATED LEARNING SCENARIO

In order to simulate a learning shoe, we collect step counts of a user
for 24 hours using a fitness tracker. We observe that a person takes
around 7,000 steps daily, and about 213 steps per 30 minutes on
average during active hours. We use a leg-mounted accelerometer
dataset [2] to learn and predict different activities using k-means
clustering algorithm. We choose two similar activities (running
and playing basketball) to ensure overlapping clusters. We split the
dataset into 70%-30% for training and validating the classifier and
perform 10-fold cross validation.

Table 1 shows the model quality, the corresponding required
energy, steps and time for different data sizes. Three major factors
are to be noted in the table. First, by learning only 60% of the total
data, we can learn a model with comparable accuracy in 2 hours
45 minutes instead of 4 hours 34 minutes. Thus by learning only
a selected subset of data samples, we can learn a similar model
using much less energy. Next, the significant overhead of inter-
mittently powered system needs to be considered while designing
such system. To minimize this overhead cost, different non-volatile
memories (e.g., FRAM) needs to be exploited. Finally, it is evident
that learning with harvested energy is possible. By using better
energy harvesters, efficient memory, and optimized ML techniques,
the learning time can be significantly minimized.

Next, we simulate a batteryless learner using the measurements
from previous sections. We observe that learning a data point,
including data gathering, selection, feature extraction (i.e., means
and standard deviations), training online k-means clustering model
and prediction require 108 m]J. Storing and retrieving data points
(1.5 KB, 4-byte float) and program states (100 bytes) consume 120 mJ.
To improve the system’s energy efficiency, learning from fewer data
samples is a possible solution. As mentioned previously, energy
generated by the learning shoe prototype for each step is 92y]J.
Therefore, approximately 1,181 steps are required to learn 350 data
points and another 815 steps are required to compensate for the
intermittence overhead. By learning only 50% of the data points, we
reduce the total consumption to 1026 steps. The dependency of the
result on data is a unique characteristic of machine learning and is
absent in general computing algorithms. It introduces a trade-off
between the quality of the model and required time/power.

5 CONCLUSION

We propose that the fusion of machine learning and batteryless
technology to enable lifelong learning in mobile embedded systems
and demonstrate the feasibility of batteryless learning systems.
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