
Demo Abstract: Capuchin: A Neural Network Model Generator
for 16-bit Microcontrollers
Le Zhang, Yubo Luo, and Shahriar Nirjon

University of North Carolina at Chapel Hill

lezhang@unc.edu,yubo@cs.unc.edu,nirjon@cs.unc.edu

ABSTRACT

Resource-optimized deep neural networks (DNNs) nowadays run

on microcontrollers to perform a wide variety of audio, image and

sensor data classification tasks. Despite comprehensive support for

deep learning tools for 32-bit microcontrollers, performing deep

learning inferences on 16-bit microcontrollers still remains a chal-

lenge. Although there are some tools for implementing neural net-

works on 16-bit systems, generally, there is a large gap in efficiency

between the development tools for 16-bit microcontrollers and 32-

bit (or higher) systems. There is also a steep learning curve that

discourages beginners inexperienced with microcontrollers and

programming in C to develop efficient and effective deep learning

models for 16-bit microcontrollers. To fill this gap, we have created

a neural network model generator that (1) automatically transfers

parameters of a pre-trained DNN or CNN model from commonly

used frameworks to a 16-bit microcontroller, and (2) automatically

implements the model on the microcontroller to perform on-device

inference. The optimization of data transfer saves time and mini-

mizes chances of error, and the automatic implementation reduces

the complexity to implement DNNs and CNNs on ultra-low-power

microcontrollers.

KEYWORDS

Neural Network, Machine Learning, Microcontroller, Edge Com-

puting, Model Generation, On-device Classification.

1 INTRODUCTION

In recent years, we see an increased number of microcontroller-

based embedded sensing systems running scaled-down versions of

deep and convolutional neural networks to perform on-device in-

ferences for simple audio or image classification tasks [5, 7]. While

on-device inference is practical, on-device training is generally

unrealistic on these devices due to computational power, mem-

ory, and energy limitations. As a result, developers usually train

neural network models on a high-end machine and then load the

model onto microcontrollers. Although machine learning frame-

works like TensorFlow Lite [4] provide solutions for 32-bit micro-

controllers, the inconvenience of transferring pre-trained model

parameters onto 16-bit microcontrollers troubles the developers.

The common solution includes a series of complicated operations

such as designing and training the model using a high-level pro-

gramming language (e.g., python), formatting pre-trained neural

network weights and parameters, copying and pasting the weights

and parameters in arrays declared inside programs independently

written for microcontrollers in a low-level language (e.g., C), and

writing code layer-by-layer to configure the inferencemodel (Figure

1). This process is time-consuming and error-prone. While there are

Figure 1: Traditional Workflow. Solid arrows represent man-

ual implementation.

Figure 2: Proposed Workflow. Dotted arrows represent auto-

matic model generation.

a few neural network development frameworks for 16-bit ultra-low-

power microcontrollers [5, 7], an efficient tool connecting 16-bit

microcontrollers to large-scale machine learning frameworks like

TensorFlow is missing.

In this paper, we introduce Capuchin, which is a deep neural net-

work model generator for 16-bit microcontrollers, such as MSP430

series MCUs, which consists of two parts: (1) a python encoder

module collaborated with the TensorFlow framework to generate a

header file with pre-trained neural network parameters, and (2) a

framework that automatically generates models for the target mi-

crocontroller using the header file provided by the encoder module.

Capuchin improves the efficiency of developing neural network

models on microcontrollers by freeing the programmer from the

time consuming, tedious, and error-prone copying-and-pasting job

and saves the development overhead due to transferring the weights

and biases from TensorFlow models to microcontroller by over 90%

– from minutes to a few seconds. At the same time, the automation

of header file composing, parsing, and model generation minimizes

the chance of error by reducing programmer’s engagement. As

shown in Figure 2, all underlying data processing mechanisms are

transparent to the programmer except the only step to move a file

from one system to the other. Programmers are only allowed to

use the highly abstract function calls to initiate these mechanisms

without the necessity to change anything underlying. Beyond that,

the model-level and layer-level abstraction function calls scaffold a

framework for programmers to perform creative work on micro-

controllers beyond single model inferences, e.g., on-device training

and multitask learning. Besides, Capuchin decreases the demands

of understanding the microcontroller platform and the skills of

programming in C. The code generator allows users to touch zero

C code, which benefits beginners unfamiliar with or reluctant to

program and debug in C.

497

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00049

20
22

 2
1s

t A
CM

/I
EE

E
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
fo

rm
at

io
n

Pr
oc

es
sin

g
in

 S
en

so
r N

et
w

or
ks

 (I
PS

N
) |

 9
78

-1
-6

65
4-

96
24

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

SN
54

33
8.

20
22

.0
00

49

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on December 05,2022 at 17:03:50 UTC from IEEE Xplore. Restrictions apply.

2 DESIGN

The design of Capuchin is constrained by the limited resources

of the target platform. In particular, we use TI MSP430FR5994 16-

bit/16MHz ultra-lower-power (1.8V-3.6V, 0.7𝜇A idle, 118𝜇A/MHz
active) microcontrollers which come with 8KB SRAM (volatile

memory) and 256KB FRAM (non-volatile memory) [6]. These mi-

crocontrollers are quite capable of executing memory-optimized

DNNs [5, 9, 10]. These microcontrollers are programmed in C.

Hence, to create a bridge between python-based modern deep learn-

ing frameworks and these microcontrollers, we use C header files as

the file format for data transferring and address two major concerns

pertaining to memory usage: (1) the commonly used Python-to-C

compilers cause massive redundancy after compiling, and (2) other

file formats cannot be directly compiled with C and thus require

extra external parser libraries. We implement an encoder module to

interface with TensorFlow and to transfer neural network parame-

ters into a header file. The microcontroller parses these parameters

from the header file to generate neural network models.

Data Encoding. To extract the data from TensorFlow neural net-

work models, we design our encoder module to interface with Keras

APIs, one of the most popular machine learning frameworks. Specif-

ically, by iterating the layers of a Keras [1] model object, the encoder

module extracts information, including input shapes, output shapes,

filter sizes, pool sizes, stride sizes and activation functions, along

with weights and biases of each layer. Then the module processes

data into formats corresponded with our microcontroller frame-

work, serializes the data into an array, and writes the array into a

header file. Users can import the encoder module into their code

and call the encode function with the desired pre-trained model as

the parameter.

Data Transfer. In our current implementation, data transfer is done

manually between TensorFlow and the microcontroller – which are

two separate systems. Programmers are prompted to copy a header

file generated by the encoder module to the designated directory

in the microcontroller framework. The header file is later compiled

with the framework for inference tasks. In the next version of

Capuchin, we aim at automating this process.

Model Generation. Capuchin is built on the top of [7] which pro-

vides support for fixed-point operations, matrix operations, and

dense layers. We develop additional functions, including filter oper-

ations for convolutional layers, max-pooling layers, and the pipelin-

ing design for model generation. Specifically, we employ MSP430

Low-Energy Accelerator (LEA) [6] to optimize both the inference

time and energy consumption by about 10%. Our model generator

parses the array in the header file into each layer’s parameters,

weights, and biases and applies these data to generate an inference

model. Given the limited memory and static memory allocation, we

implement a pipeline using two static buffer arrays, input buffer

feeding input for each layer and output buffer saving the result,

and copying output buffer to input buffer for the next layer. Thus,

we optimize memory usage by reusing two static arrays for inputs

and outputs of all layers.

Examples. We provide examples of models generated with Ca-

puchin and their performance in Table 1. The details of the networks

can be found here [14].

Dataset Size(kB) Time(s) Accuracy(%)

mini-GSC [12, 13] 44 4.9 79

ESC-50 [11] 69 5.9 69

CIFAR-10 [8] 78 5.4 61

VWW [3] 2 2.5 77

HAR [2] 16 1.0 94

Table 1: Performance over popular datasets.

3 DEMONSTRATION

We will demonstrate how a real-world sensing and inference prob-

lem can be solved using Capuchin. We will also do a live demo to

show the inference performance. We will implement a sensor (e.g.,

microphone, camera, accelerometer, etc.) to collect real-time data

and do the classification onsite. The demonstration will happen

in two phases. First, the audience will be shown step-by-step how

to use Capuchin to create the classifier. We will use a pre-trained

model developed in TensorFlow and use Capuchin to transfer it and

generate a binary file for MSP430. The audience will be allowed

to choose or modify the neural network architecture to see how

that change is reflected when Capuchin generates the model for

the microcontroller. Second, there will be a live demo where the

system samples and classifies sensor data onsite. Besides the clas-

sification result, we will also show the CPU and memory usage

and the real-time performance of the classifier to help the audience

understand the difference between different model choices.

REFERENCES
[1] 2015. Keras. https://keras.io.
[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-

Ortiz, et al. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

[3] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. 2019. Visual wake words dataset. arXiv preprint arXiv:1906.05721
(2019).

[4] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, et al. 2020. Tensor-
flow lite micro: Embedded machine learning on tinyml systems. arXiv preprint
arXiv:2010.08678 (2020).

[5] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
Beyond the Edge: Inference on Intermittent Embedded Systems. In Proc. of the
International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 199–213.

[6] Texas Instruments Inc. 2021. MSP430FR599x, MSP430FR596x Mixed-Signal Mi-
crocontrollers. https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf

[7] Tejas Kannan and Henry Hoffmann. 2021. Budget RNNs: Multi-Capacity Neural
Networks to Improve In-Sensor Inference Under Energy Budgets. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS).

[8] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[9] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nirjon. 2019. Intermittent
Learning: On-device Machine Learning on Intermittently Powered System. Proc.
of the ACM IMWUT 3, 4 (2019).

[10] Seulki Lee and Shahriar Nirjon. 2020. Fast and scalable in-memory deep multitask
learning via neural weight virtualization. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services. 175–190.

[11] Karol J Piczak. 2015. ESC: Dataset for environmental sound classification. In
Proceedings of the 23rd ACM international conference on Multimedia. 1015–1018.

[12] Tensorflow. [n.d.]. Simple audio recognition: Recognizing keywords. https:
//www.tensorflow.org/datasets/catalog/speech_commands

[13] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[14] Le Zhang. 2022. Capuchin Github. https://github.com/leleonardzhang/Capuchin

498

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on December 05,2022 at 17:03:50 UTC from IEEE Xplore. Restrictions apply.

